
genee

A Learning Classi�er based on Genetic Algorithms

Patric Fornasier

patricf@cse.unsw.edu.au

Version 0.1 � June 8, 2006

Abstract

Genetic algorithms are a particular class of algorithms that provide an approach to learning

inspired by the model of biological evolution, i.e. selection, crossover and mutation. The goal of this

project was to implement a genetic algorithm including di�erent crossover rules. Two standard UCI

data sets were given, to evaluate the performance of the implementation. WEKA [8] has been chosen

as a framework to facilitate the development.

1 Introduction

As in other machine learning techniques, genetic algorithms involve searching through a space of possible

hypotheses. The approach taken by genetic algorithms to �nd the best hypothesis is the following:

The algorithm randomly creates a number of hypotheses (the individuals forming the population) and

evaluates their performance (�tness) over the given training set. Following that it will probabilistically

select a set of hypotheses according to their �tness to be taken into the new generation. Similarly it

will select another set of hypothesis pairs that will be recombined to form new hypotheses (o�spring).

Finally, the algorithm will combine these two sets to form a new generation and pick some hypotheses

for mutation, by randomly changing some of their values. The hypotheses of the new generation will

subsequently be re-evaluated based on their �tness and the process of selection, crossover and mutation

will be repeated. The algorithm stops when a certain termination criterion has been reached, e.g. a

hypothesis with a minimum �tness has been found or the number of maximum generations has been

exhausted.

The remainder of this paper is organized as follows. In Section 2, I introduce the basic idea of the

software implementation, which has been the biggest part of this work. This implementation is then put

to test in Section 3, where I also discuss the results. Finally, I evaluate the results in Section 4 and map

out directions for future work.

2 Implementation

One of the �rst problems that I addressed was how to encode the hypothesis into a form suitable for

easy manipulation. First, I considered representing the hypothesis as a tree, since tree structures are well

understood and easy to manipulate. However one of the requirements of the project was to implement

single-point, two-point or uniform crossover rules and these kind of crossover rules didn't seem to be very

well applicable to tree structures. That's why I decided to encode the hypotheses, i.e. the rules, as it is

traditionally done in bit strings of 0s and 1s.

For every possible value of each attribute in the rule, one bit is reserved. This implies that all the

rules have the same rule length, i.e. number of bits, and that the order of the attributes is crucial.

Note that the class attribute is subject to the additional constraint that at any given time, only one

bit can be set. This will avoid creating rules with disjunctive consequents. The hypothesis on the other

end is merely a set of an arbitrary number of disjunctive rules.

1

patricf@cse.unsw.edu.au


Figure 1: Rule encoding

The genetic algorithm itself has been implemented as a WEKA classi�er. On one side this allowed me

to take advantage of the functionality provided by the WEKA library and on the other side I leveraged

WEKA by providing an additional classi�er that can easily be integrated into the framework [7]. The

core of the algorithm roughly works as outlined in section 1. The classi�er has been designed in a �exible

way that allows further extension. For example users can provide their own Fitness or Crossover

implementations at runtime, without having to modify the existing code.

The software package [4] has been developed in-line with current best practices in open-source software

engineering, e.g. unit tests [2], automated build including project report and metrics generation [5],

version control [1], and can be obtained along with further documentation under the LGPL license from

SourceForge [3].

3 Experimentation

The classi�er has been tested on the two given data sets using 3-fold cross-validation and di�erent

parameters. Below are two charts that show the evolution on the mushroom dataset over roughly 1300

generations with a population size of 100 individuals. Further experimentation results are summarized

in the appendix.

Figure 2: Number of rules per generation

The performance in terms of correctly classi�ed instances is quite acceptable, if the correct parameters

are chosen. However, the time to build the classi�er seems to take very long, especially when hypotheses

contain a large number of rules.

2



Figure 3: Number of correctly classi�ed instances per generation

4 Conclusion and Future Work

In this project I have shown how to implement a genetic algorithm to learn from data. Also, I have

demonstrated how to leverage WEKA and make use of some of the rich features it provides.

The project should be seen as a starting point for further development. It provides a solid and

thoroughly tested base that serves as a proof of concept. However, there is certainly a lot of room for

improvement in some of the performance aspects, especially in regard of the time it takes to build the

classi�er. Also, it might be worthwhile to explore di�erent Fitness implementations. For example:

additionally considering hypothesis complexity, i.e. number of rules, in the �tness calculation might help

to avoid over�tting of the data.

References

[1] CVS. http://www.nongnu.org/cvs/.

[2] JUnit. http://www.junit.org/.

[3] SourceForge.net. http://www.sourceforge.net/.

[4] Patric Fornasier. orcus-genee. http://orcus.sourceforge.net/genee.

[5] The Apache Software Foundation. Maven2. http://maven.apache.org/.

[6] Tom Mitchell. Machine Learning. McGraw-Hill, 1997.

[7] The University of Waikato. GenericObjectEditor and GenericPropertiesCreator. http://www.cs.

waikato.ac.nz/ml/weka/goe/.

[8] The University of Waikato. WEKA. http://www.cs.waikato.ac.nz/ml/weka/.

3

http://www.nongnu.org/cvs/
http://www.junit.org/
http://www.sourceforge.net/
http://orcus.sourceforge.net/genee
http://maven.apache.org/
http://www.cs.waikato.ac.nz/ml/weka/goe/
http://www.cs.waikato.ac.nz/ml/weka/goe/
http://www.cs.waikato.ac.nz/ml/weka/


Appendix

Below are two excerpts of the output that has been generated by the algorithm for the given two data

sets. In both sets 3-fold cross-validation has been used. Due to time-constraints the mushroom datasets

could only be tested with 100 generations.

mushroom.ar�

Options: -G 100 -P 200

genee.GeneticClassifier@ee1abe[

hypothesis=genee.model.Hypothesis@f45a93[size=20320,numRules=160]

numTotal=8124

numCovered=5596

numUncovered=2528

numCorrect=5150

numIncorrect=446

correct=0.6339241752831117

inCorrect=0.3660758247168882

coverage=0.6888232397833579

accuracy=0.9203002144388849

]]

Time taken to build model: 2610.19 seconds

Time taken to test model on training data: 0.28 seconds

=== Error on training data ===

Correctly Classified Instances 5150 63.3924 %

Incorrectly Classified Instances 446 5.4899 %

Kappa statistic 0.8345

Mean absolute error 0.0549

Root mean squared error 0.2343

Relative absolute error 16.0219 %

Root relative squared error 56.7162 %

UnClassified Instances 2528 31.1177 %

Total Number of Instances 8124

=== Confusion Matrix ===

a b <-- classified as

3136 60 | a = e

386 2014 | b = p

=== Stratified cross-validation ===

Correctly Classified Instances 5614 69.1039 %

Incorrectly Classified Instances 986 12.1369 %

4



Kappa statistic 0.702

Mean absolute error 0.1214

Root mean squared error 0.3484

Relative absolute error 29.9595 %

Root relative squared error 77.4619 %

UnClassified Instances 1524 18.7592 %

Total Number of Instances 8124

=== Confusion Matrix ===

a b <-- classified as

2872 675 | a = e

311 2742 | b = p

balance-scale.ar�

Options: -C 0.8 -G 200 -P 100

net.sf.orcus.genee.GeneticClassifier@48ff61[

hypothesis=net.sf.orcus.genee.model.Hypothesis@1302bb6[size=2438,numRules=106]

numTotal=625

numCovered=625

numUncovered=0

numCorrect=430

numIncorrect=195

correct=0.688

inCorrect=0.312

coverage=1.0

accuracy=0.688

]]

Time taken to build model: 147.01 seconds

Time taken to test model on training data: 0.03 seconds

=== Error on training data ===

Correctly Classified Instances 430 68.8 %

Incorrectly Classified Instances 195 31.2 %

Kappa statistic 0.4214

Mean absolute error 0.208

Root mean squared error 0.4561

Relative absolute error 54.7709 %

Root relative squared error 104.7048 %

Total Number of Instances 625

=== Confusion Matrix ===

5



a b c <-- classified as

227 0 61 | a = L

28 0 21 | b = B

85 0 203 | c = R

=== Stratified cross-validation ===

Correctly Classified Instances 429 68.64 %

Incorrectly Classified Instances 196 31.36 %

Kappa statistic 0.4269

Mean absolute error 0.2091

Root mean squared error 0.4572

Relative absolute error 55.0292 %

Root relative squared error 104.9719 %

Total Number of Instances 625

=== Confusion Matrix ===

a b c <-- classified as

206 6 76 | a = L

23 1 25 | b = B

60 6 222 | c = R

6


	Introduction
	Implementation
	Experimentation
	Conclusion and Future Work

